BRCA2 regulates homologous recombination in response to DNA damage: implications for genome stability and carcinogenesis.
نویسندگان
چکیده
BRCA2 has been implicated in the maintenance of genome stability and RAD51-mediated homologous recombination repair of chromosomal double-strand breaks (DSBs), but its role in these processes is unclear. To gain more insight into its role in homologous recombination, we expressed wild-type BRCA2 in the well-characterized BRCA2-deficient human cell line CAPAN-1 containing, as homologous recombination substrates, either direct or inverted repeats of two inactive marker genes. Whereas direct repeats monitor a mixture of RAD51-dependent and RAD51-independent homologous recombination events, inverted repeats distinguish between these events by reporting RAD51-dependent homologous recombination, gene conversion, and crossover events only. At either repeats, BRCA2 decreases the rate and frequency of spontaneous homologous recombination, but following chromosomal DSBs, BRCA2 increases the frequency of homologous recombination. At direct repeats, BRCA2 suppresses both spontaneous gene conversion and deletions, which can arise either from crossover or RAD51-independent sister chromatid replication slippage (SCRS), but following chromosomal DSBs, BRCA2 highly promotes gene conversion with little effect on deletions. At inverted repeats, spontaneous or DSB-induced crossover events were scarce and BRCA2 does not suppress their formation. From these results, we conclude that (i) BRCA2 regulates RAD51 recombination in response to the type of DNA damage and (ii) BRCA2 suppresses SCRS, suggesting a role for BRCA2 in sister chromatids cohesion and/or alignment. Loss of such control in response to estrogen-induced DNA damage after BRCA2 inactivation may be a key initial event triggering genome instability and carcinogenesis.
منابع مشابه
BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis.
The breast/ovarian cancer susceptibility proteins BRCA1 and BRCA2 maintain genome stability, at least in part, through a functional role in DNA damage repair. They both colocalize with RAD51 at sites of DNA damage/replication and activate RAD51-mediated homologous recombination repair of DNA double-strand breaks (DSB). Whereas BRCA2 interacts directly with and regulates RAD51, the role of BRCA1...
متن کاملCohesion, Genome Stability, and Carcinogenesis Replication Slippage: Implications for Sister Chromatid Damage and Suppresses Spontaneous Sister Chromatid BRCA1 Regulates RAD51 Function in Response to DNA
The breast/ovarian cancer susceptibility proteins BRCA1 and BRCA2 maintain genome stability, at least in part, through a functional role in DNA damage repair. They both colocalize with RAD51 at sites of DNA damage/replication and activate RAD51-mediated homologous recombination repair of DNA double-strand breaks (DSB). Whereas BRCA2 interacts directly with and regulates RAD51, the role of BRCA1...
متن کاملBCCIP regulates homologous recombination by distinct domains and suppresses spontaneous DNA damage
Homologous recombination (HR) is critical for maintaining genome stability through precise repair of DNA double-strand breaks (DSBs) and restarting stalled or collapsed DNA replication forks. HR is regulated by many proteins through distinct mechanisms. Some proteins have direct enzymatic roles in HR reactions, while others act as accessory factors that regulate HR enzymatic activity or coordin...
متن کاملThe Role of PALB2 in the DNA Damage Response and Cancer Predisposition
The deoxyribonucleic acid (DNA) damage response (DDR) is a major feature in the maintenance of genome integrity and in the suppression of tumorigenesis. PALB2 (Partner and Localizer of Breast Cancer 2 (BRCA2)) plays an important role in maintaining genome integrity through its role in the Fanconi anemia (FA) and homologous recombination (HR) DNA repair pathways. Since its identification as a BR...
متن کاملA phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination.
Homologous recombination (HR) is one of the major DNA double-strand break (DSB) repair pathways in mammalian cells. Defects in HR trigger genomic instability and result in cancer predisposition. The defining step of HR is homologous strand exchange directed by the protein RAD51, which is recruited to DSBs by BRCA2. However, the regulation of the BRCA2-RAD51 axis remains unclear. Here we report ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 65 10 شماره
صفحات -
تاریخ انتشار 2005